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The stretching rate, normalized by the reciprocal of the Kolmogorov time, of suffi-
ciently extended material lines and surfaces in statistically stationary homogeneous
isotropic turbulence depends on the Reynolds number, in contrast to the conventional
picture that the statistics of material object deformation are determined solely by the
Kolmogorov-scale eddies. This Reynolds-number dependence of the stretching rate
of sufficiently extended material objects is numerically verified both in two- and
three-dimensional turbulence, although the normalized stretching rate of infinitesimal
material objects is confirmed to be independent of the Reynolds number. These
numerical results can be understood from the following three facts. First, the
exponentially rapid stretching brings about rapid multiple folding of finite-sized
material objects, but no folding takes place for infinitesimal objects. Secondly, since
the local degree of folding is positively correlated with the local stretching rate and it is
non-uniformly distributed over finite-sized objects, the folding enhances the stretching
rate of the finite-sized objects. Thirdly, the stretching of infinitesimal fractions of
material objects is governed by the Kolmogorov-scale eddies, whereas the folding of
a finite-sized material object is governed by all eddies smaller than the spatial extent
of the objects. In other words, the time scale of stretching of infinitesimal fractions of
material objects is proportional to the Kolmogorov time, whereas that of folding of
sufficiently extended material objects can be as long as the turnover time of the largest
eddies. The combination of the short time scale of stretching of infinitesimal fractions
and the long time scale of folding of the whole object yields the Reynolds-number
dependence. Movies are available with the online version of the paper.

1. Introduction
Marbling (see the visualization in figure 6) stems from a successive combination of

stretching and folding of the boundary between two materials. We fluid mechanists
desire to understand and control the stretching and folding because the pattern is
not only beautiful but closely related to the mixing of two materials, and because the
mixing is a crucial function of fluid flow, especially of turbulence.

A material object is defined as one which always consists of the same set of fluid
particles (Batchelor 1952). Therefore, a material line in two-dimensional flow or a
surface in three-dimensional flow constitutes a boundary between two regions of the
fluid. In other words, the line or surface can be regarded as the boundary between
two liquid materials if they have same density, and molecular diffusion is negligible
compared to the advection effects. It is, therefore, useful to study deformation of
material lines and surfaces to understand the mechanism and statistics of turbulent
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mixing. The stretching of material objects in turbulence has been studied intensively by
many authors (Batchelor 1952; Cocke 1969; Girimaji & Pope 1990; Huang 1996; Kida
& Goto 2002; Goto & Kida 2002, 2003; Guala et al. 2005). Their exponentially rapid
stretching was predicted by Batchelor (1952) and verified numerically by Girimaji &
Pope (1990). The folding of material objects, however, has not been studied so far
because the properties of folding of material objects cannot be captured easily even in
numerical turbulence; for this purpose, finite-sized material objects must be tracked
for a sufficiently long time. Since material objects are stretched exponentially in time,
this kind of simulation requires huge computational resources.

The conventional idea of deformation of material objects is that the stretching is
described solely by the characteristics of the smallest-scale (i.e. the Kolmogorov length)
eddies in isotropic turbulence. Such eddies, having the smallest time scale, make a
dominant contribution to the stretching of material objects, and this is the origin of
the exponential stretching. But intensive folding of material objects is brought about
by eddies of all scales (see figure 12, below) which affects the mean value of the
stretching rate as the statistical weight. The purpose of the present article is to clarify
how the folding leads to the Reynolds-number dependence of the mean stretching rate.

Note that this effect of folding on the mean stretching rate cannot be observed in
moderate-Reynolds-number flows because it is the multi-scale nature of turbulence
that plays a crucial role. Therefore, in addition to three-dimensional turbulence
at relatively large Reynolds numbers, we conduct numerical simulations of two-
dimensional turbulence, in which a sufficiently wide inertial range can be realized.
Note also that the Reynolds-number dependence of the stretching rate cannot be
investigated by the simulation of fixed-length material lines, or of infinitesimal line or
surface elements. The mean stretching rate (about 0.17τη

−1) of fixed-length material
lines (Goto & Kida 2003) and that (about 0.13τη

−1) of infinitesimal line elements
(Girimaji & Pope 1990) are independent of the Reynolds number. Here τη is the
Kolmogorov time. These results seem to contrast with the conclusion of the present
article that the mean stretching rate of sufficiently extended material objects depends
on the Reynolds number in a non-trivial manner. This superficial contradiction is
solved by taking folding effects into account. The folding of material objects has
been completely ignored in those simulations of fixed-length lines and of infinitesimal
material elements.

The rest of the article is organized as follows. The next section briefly outlines
our direct numerical simulations (DNS) of material lines and surfaces both in
two-dimensional and three-dimensional turbulence. We report, in § 3, the numerical
evidence of the Reynolds-number dependence of the stretching rate of sufficiently
extended material objects. In the discussion of this, it is crucial to introduce the
spatial extent of material objects because their folding features (and therefore their
mean stretching rate) are different depending on the extent. The physical explanation
of this interesting numerical result is given in § 4. Concluding remarks are given in
the last section.

2. Direct numerical simulation
2.1. Material lines and surfaces

A material line is expressed numerically by a chain of short line segments. Since the
line length increases rapidly in time, we employ an interpolation along the line at
every numerical time step to make each segment always shorter than a threshold of
the order of the Kolmogorov length η. The line length becomes longer in time, and so



Reynolds-number dependence of line and surface stretching 61

the number of segments increases. Therefore, the computer memory limits the total
simulation time. A material surface, on the other hand, is constructed by a set of
small triangles. Similarly to material lines, we monitor the side length of each triangle.
If it is longer than a threshold of O(η) a triangle is divided into two. We store all
the connections between triangles as well as their position vectors to carry out the
divisions of triangles efficiently.

Here, we discuss the choice of threshold for the interpolation of material objects.
For infinitesimal line elements, in Kida & Goto (2002) we have checked the relevance
of the simulated statistics of stretching by changing the threshold, and concluded
that they are independent of the threshold if it is as small as η. This is expected
to be valid also for the finite-sized objects because the interpolation is concerned
with the length scale parallel to the objects, though the length scale (e.g. the width
between streaks observed in figure 6) perpendicular to them can be much shorter
than η. It is shown below that the Reynolds-number dependence of the stretching
rate of finite-sized objects can be explained without taking account of the action
of sub-Kolmogorov-scale flow structures. Nevertheless, we cannot fully exclude the
possibility that such structures may affect the statistics of material objects, since some
references (e.g. Frisch & Vergassola 1991; Yakhot & Sreenivasan 2005) have reported
Reynolds-number dependence in the intermediate dissipation range.

By the definition of a material object, the position vector xp(t) of any point in it
moves according to the advection equation,

d

dt
xp = u(xp(t), t), (2.1)

where u(x, t) is a velocity field. The characteristics of the present numerical turbulence
is described in the following two subsections. Equation (2.1) is integrated numerically
using the fourth-order Runge–Kutta scheme. The right-hand side of (2.1) is estimated
by the third-order Lagrangian interpolation of the velocity field at numerical grids.
The temporal evolution of the velocity field is simulated simultaneously with that of
material objects.

2.2. Lines and surfaces in three-dimensional turbulence

In this subsection we describe three-dimensional DNS. Statistically stationary homo-
geneous isotropic turbulence of an incompressible fluid is realized by solving the
Navier–Stokes equation with an external force f ,(

∂

∂t
+ u · ∇

)
u = − 1

ρ
∇p + ν∇2u + f , (2.2)

and the continuity equation ∇ · u =0, under the periodic boundary condition of
period 2π in three orthogonal directions. Here, p(x, t), ρ and ν are the pressure,
the constant density and the kinematic viscosity of the fluid. We integrate (2.2)
numerically by the fourth-order Runge–Kutta scheme, where the spatial derivative is
estimated by a de-aliased Fourier spectral method. The large-scale external forcing is
implemented by fixing the amplitudes of Fourier components in a low-wavenumber
region (say k <

√
8). Numerical parameters are given in Goto & Kida (2003). We

simulate turbulence at five different Reynolds numbers,

Rλ =

√
20

3νε
E, (2.3)
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(a) IIIA IIIB IIIC IIID IIIE

N 3 1283 1283 2563 5123 5123

E 0.544 0.573 0.586 0.585 0.601
ε 0.124 0.127 0.124 0.119 0.121

T 4.39 4.51 4.73 4.92 4.97
τη 2.02 × 10−1 1.41 × 10−1 1.01 × 10−1 7.26 × 10−2 5.09 × 10−2

L 3.23 3.42 3.62 3.76 3.85
η 3.17 × 10−2 1.87 × 10−2 1.12 × 10−2 6.74 × 10−3 3.99 × 10−3

kmaxη 1.91 1.12 1.35 1.62 0.96
Rλ 5.65 × 10 8.31 × 10 1.21 × 102 1.75 × 102 2.52 × 102

(b) IIA IIB IIC IID

N 2 5122 10242 20482 40962

E 10 6.3 3.6 1.7
ε 3.0 1.4 0.60 0.20

L 0.38 0.32 0.29 0.23
η 6.1 × 10−2 3.1 × 10−2 1.5 × 10−2 7.7 × 10−3

T 0.12 0.13 0.15 0.17
τη 1.2 × 10−2 9.6 × 10−3 7.9 × 10−3 6.8 × 10−3

L/η 6.3 10 19 30
T/τη 10 13 19 25

Table 1. Statistics of simulated (a) three-dimensional turbulence and (b) two-dimensional
turbulence.
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Figure 1. Energy spectra E(k) normalized by the Kolmogorov length η and the energy
dissipation rate ε: (a) three-dimensional DNS, (b) two-dimensional DNS. Dashed lines indicate
the Kolmogorov inertial-range spectrum proportional to k−5/3. See table 1 for the statistics of
simulated flow in the respective cases.

based on the Taylor length, by changing ν and the number N3 of numerical grid
points. Here, E and ε are the mean energy per unit mass and its dissipation rate per
unit time, respectively. The statistics of the simulated velocity field are summarized
in table 1(a). The largest and the smallest length scales are defined by L ≡ E3/2/ε

and η ≡ ε−1/4ν3/4, respectively. Correspondingly, the largest and the smallest time
scales are defined by T ≡ E/ε and τη ≡ ε−1/2ν1/2, respectively. The simulated energy
spectra E(k), normalized by the Kolmogorov variables, are plotted in figure 1(a). Only
a narrow inertial range, where the energy spectrum takes the k−5/3 power form, is
observed even at the highest Reynolds number (Rλ = 250).
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(a) (b)

Figure 2. Temporal evolution of a line in three-dimensional turbulence. t = 0 (top), 25τη

(middle) and 50τη (bottom). The entire simulation box (side is about 2L) is shown, and the
line is cropped by the box. The bottom chessboard pattern indicates squares of side length
50η. (a) Run IIIA. (b) IIIE.

In figure 2 we plot the typical temporal evolution of a line for two different Reynolds
numbers Rλ = 57 and 250. The time increment between successive panels is 25τη. The
entire simulation box is presented, whose side length is about 2L irrespective of
the Reynolds number. The chessboard pattern on the bottom indicates the length
of 50η. Two interesting characteristic features may be recognized in this figure. The
first is the characteristic length of deformations, if measured in units of L, is a
decreasing function of Rλ. Note, however, that as already demonstrated in figure 2
of Goto & Kida (2003), it is hardly dependent on Rλ if viewed on the Kolmogorov
scale, i.e. the size of the chessboard pattern. This is consistent with Batchelor’s (1952)
idea that the deformation of material objects is due to the Kolmogorov-scale eddies.
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(b)(a)

Figure 3. Temporal evolution of a surface in three-dimensional turbulence. t = 0 (top), 5τη

(middle) and 10τη (bottom). Entire simulation box (side is about 2L) is shown. The bottom
chessboard pattern indicates 50η squares. (a) Run IIIA. (b) IIIE. A movie of (a) is available
with the online version of the paper (movie 1).

Note, in passing that the mean curvature of fixed-length material lines is about
0.1η−1 irrespective of the Reynolds number (Goto & Kida 2003). Here, the mean
curvature is estimated by the average of local curvatures of short fractions of finite-
length lines with the statistical weight proportional to the length of each fraction.
The second characteristic feature is that the extent of the deformed material objects
is narrower for the larger Reynolds number in units of L. This may imply that
for larger Reynolds numbers material lines are confined in smaller regions. It is this
intensive accumulation and pile-up of material lines that affects the Reynolds-number
dependence of the statistics of material object stretching.

A similar Reynolds-number dependence is observed in the deformation of material
surfaces as shown in figure 3. Here, the temporal evolution of a material surface,
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(a) (b)

(d)(c)

Figure 4. Cross-sections of a material surface in three-dimensional turbulence. Side length
of a square is 100η. (a, b) Run IIIA; (c, d) IIID. (a, c) t =5τη; (b, d) 10τη .

which starts with a flat plane, is drawn in the entire simulation box at times 5τη and
10τη for two Reynolds numbers Rλ = 57 and 250 in (a) and (b), respectively. The size
of the chessboard pattern is the same as in figure 2. It is seen, on this integral scale
L, that the vertical extent of the surface is narrower and the deformation is finer for
the larger Reynolds number. On the Kolmogorov scale, on the other hand, the degree
of deformation is comparable for the two Reynolds numbers. This is clearly seen
in figure 4, where we draw the cross-sections of surfaces sliced through an arbitrary
plane in a square of side length 100η at t =5τη and 10τη for Rλ = (a, b) 57 and (c, d)
250. Some important characteristic features may be recognized by comparing these
four cross-sections. First, the curvature of the lines is nearly the same in magnitude
irrespective of the elapsed time and the Reynolds number. In fact, the radius of
curvature is of O(10η), which is comparable with the mean diameter of the smallest-
scale eddies (Goto & Kida 2003). Secondly, the lines are not simple but multiple in
many places, which represents the multiple layers of material surfaces. The multiplicity
is stronger for the larger Reynolds number and is enhanced more and more as time
progresses. Thirdly, although much deformed, the T-shaped form of various sizes is
embedded at many places along the multiple lines. This T-shaped form is generated
by swirling flows induced by pairs of anti-parallel vortices (see Goto & Kida 2003).
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2.3. Lines in two-dimensional turbulence

It will become clear below that the stretching of material objects is not only a
Kolmogorov-scale phenomenon, but also eddies of various length scales play roles
in the statistics of the stretching rate. In other words, the mean stretching rate
cannot be determined by dissipation-range properties only. This is the reason why
we conduct two-dimensional DNS, where we can simulate a wider inertial range
by using a smaller number of grid points compared to three-dimensional DNS. We
can also partly circumvent, in this two-dimensional case, the exponential growth of
computational memory requirement by employing a merger technique; that is, when
any two of line segments approach to within some close distance they are identified,
and thereafter only one of them is tracked as the representative of the two. Even
though we have to estimate the sum of merged segment lengths, this leads to a huge
saving of computational resources. We use this merger technique in later sections to
estimate the line statistics in two-dimensional DNS. In the three-dimensional case,
however, it is not numerically straightforward to use this kind of technique.

Similarly to the three-dimensional DNS, we integrate the two-dimensional version of
the Navier–Stokes equation (2.2) numerically by employing the fourth-order Runge–
Kutta scheme and the Fourier spectrum method. Since the energy is cascaded up to
larger scales, unlike three-dimensional turbulence, we excite the flow at small scales.
In practice, we keep the magnitudes of Fourier components in a high-wavenumber
region around k = kf constant in time. Then, the forcing scale 2π/kf gives the lower
length limit of the inertial range so that we may call it the Kolmogorov scale and
denote it by η ≡ 2π/kf . In order to compress the enstrophy-cascade-and-dissipation
range (i.e. k > kf ), we replace the viscous term ν∇2u in (2.2) by a hyper-viscous
term −ν ′∇16u. In addition, we introduce a hyper-drag term D∇−2u into this equation
to avoid energy accumulation at the largest scales. The details of numerics of this
two-dimensional turbulence are described in Goto & Vassilicos (2004). We simulate
four different turbulence states by using different forcing scales and numbers N2 of
grid points. The scale ratio L/η is used as an index of the degree of turbulence
development, instead of the Reynolds number Rλ in three-dimensional turbulence;
recall the proportionality Rλ ∼ (L/η)2/3 in three-dimensional isotropic turbulence. We
list the statistics of the simulated velocity fields in table 1(b) where the Kolmogorov
time τη is estimated by the reciprocal of the r.m.s. vorticity, ε by the constant energy
flux in the inertial range (see figure 2 of Goto & Vassilicos 2004), and L by the integral
length scale of the second-order longitudinal velocity correlation function. The energy
spectra shown in figure 1(b) exhibit a well-defined k−5/3 power law developed through
the inverse energy cascade (Kraichnan 1967; Leith 1968; Batchelor 1969).

In figure 5 we show the temporal evolution of a material line (identified as the
boundary between the black and white regions) in a square of side length 10L at
t = 0, 5τη and 10τη for two different Reynolds numbers L/η = (a) 6.3 and (b) 30.
A square of side length 10η is shown in each figure in order to indicate the domain
size of figures 6 and 7 below. Similarly to the lines and surfaces in three-dimensional
turbulence (figures 2 and 3) we observe, at the largest characteristic scale L of the
turbulence, that the deformation of lines is finer in structure and narrower in extent
for the larger Reynolds number. If, on the other hand, we magnify them to show a
box of size 10η, the smallest scales of the flow, then the typical length of deformations
appear comparable to each other (figure 6). This observation is also consistent with
the conventional picture that material objects are deformed predominantly by the
smallest-scale eddies. Indeed, by plotting the deformed material lines together with
vorticity magnitude, we see a strong spatial correlation between the vortices and the
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(a) (b)

Figure 5. Temporal evolution of a material line in two-dimensional turbulence. t = 0 (top),
5τη (middle) and 10τη (bottom). The side length of each panel is equal to 10L, and that of
the inset box is 10η. (a) Run IIA. (b) IID.

lines (figure 7). Almost all deformations of the line are caused by swirling motion
induced by the smallest-scale vortices, and typical T-shaped forms are generated by
pairs of anti-rotating vortices. However, it is important to notice here that the lines
are not simple but folded many times and that the multiplicity is stronger for the
larger Reynolds number and is enhanced more as the time elapses. As seen in the
previous subsection, this behaviour of folding of lines in two-dimensional turbulence
is the same as that of surfaces in three-dimensional turbulence (see figure 4). This is
the key to understanding the Reynolds-number dependence of the stretching rate of
material objects, as will be shown in the following sections.
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(a) (b)

Figure 6. Magnification of figure 5 (t = 10τη). The box size shown is 10η.
(a) Run IIA. (b) IID.

(a) (b)

Figure 7. Same as figure 6 but also showing the contour of vorticity magnitude. Red and blue
regions correspond respectively to positive and negative vorticity. Movies of (a) are available
with the online version of the paper (movies 2 and 3).

3. Reynolds-number dependence of stretching rate
3.1. Stretching rate and spatial extent

The stretching rates of a material line of length L(t) and a surface of area A(t) are
defined respectively by

Γ� ≡ d

dt
log L and Γ� ≡ d

dt
log A. (3.1)

From these definitions, a constant stretching rate implies the exponential growth of
L(t) or A(t). As will be seen below, the stretching rate Γ�(t) of a material line depends
on its spatial extent

� ≡

√
1

L

∫
L

(x(s) − xG)2 ds, (3.2)
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and the subscript � on Γ is a reminder. Here, s denotes the arclength along a line
and

xG =
1

L

∫
L

x(s) ds (3.3)

is the centre of gravity of the line. Likewise, the stretching rate of a material surface
depends on its extent, which may be defined in a similar manner to (3.2).

It is probable that the statistics of material objects are different depending on their
initial shape. Keeping this in mind, hereafter we restrict considerations to the cases
of initially straight lines and initially flat square surfaces.

3.2. Infinitely extended line and surface

We consider first the case that both of L(t) and �(t) of a line are much longer than the
integral length L of turbulence from the beginning. Since the spatial correlation of
the turbulent velocity field is limited by L, we expect that the stretching rate of such
sufficiently extended lines is well-defined, that is, the fluctuation may be negligible.
Let us denote this value by Γ∞(t), i.e.

Γ∞ ≡ lim
�/L→∞

Γ�, (3.4)

which is the target quantity in the present subsection. We divide the line arbitrarily
into M shorter lines whose lengths and extents at time t are denoted by 	(i)(t) and
δ(i)(t), respectively. Here, i = 1, . . . , M , and M is a positive integer. Then, length L(t)
is expressed by

L =

M∑
i=1

	(i), (3.5)

and stretching rate Γ∞(t) by

Γ∞ =

M∑
i=1

γ (i)	(i)

/
M∑
i=1

	(i) =
〈γ 	〉
〈	〉 (≡ 〈〈γ 〉〉). (3.6)

Here, γ (i) ≡ d log 	(i)/dt is the stretching rate of the ith shorter line,

〈f 〉 ≡
M∑
i=1

f (i) (3.7)

denotes the arithmetic (non-weighted) average over M lines and double brackets
〈〈f 〉〉 ≡ 〈f 	〉 / 〈	〉 stand for the weighted (by line length 	) average. Formula (3.6)
indicates that the stretching rate Γ∞(t) of a sufficiently extended line is expressed by
the weighted average 〈〈γ 〉〉 of the stretching rates of the constitnent shorter lines, and
more importantly that 〈〈γ 〉〉 is independent of the way the line was initially divided
(i.e. the number M or the initial length 	(i)(0)). This is verified numerically in the next
subsection (figure 8).

It should be emphasized here that since 	(i)(t) is expressed by the time integral of
γ (i)(t) as

	(i)(t) = 	(i)(0) exp

[∫ t

0

γ (i)(t ′) dt ′
]

, (3.8)

γ (i)(t) and 	(i)(t) must be positively correlated. Because the stretching of a material
line is regarded as a multiplicative Markovian process, this positive correlation never
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vanishes even in the infinite time limit (Goto & Kida 2002). Hence,

Γ∞ = 〈〈γ 〉〉 > 〈γ 〉 (3.9)

because

〈γ 	〉 > 〈γ 〉 〈	〉. (3.10)

Note, in passing, that the fact that 〈γ 〉 and 〈〈γ 〉〉 give different values implies that
〈log 	〉 and log 〈	〉 are different from each other because of the identities

〈γ 〉 =
d

dt
〈log 	〉 (3.11)

and

〈〈γ 〉〉 =
d

dt
log 〈	〉. (3.12)

Then, a general inequality 〈log 	〉 < log 〈	〉 (Childress & Gilbert 1995) leads to (3.9).
Furthermore, the Reynolds-number dependence (or independence) of 〈〈γ 〉〉 (or 〈γ 〉),
which is shown below (figures 10, 11, 16 and 17), may be understood from the fact that
the evolution of 	 (or log 	) is a multiplicative (or an additive) Markovian process.
Note that, owing to the exponential function in (3.8), 	 (or log 	) is expressed by a
product (or summation) of random variables, and that extreme events do (or do not)
influence the entire statistics in a multiplicative (or additive) process.

In practice in our DNS, M1 lines which are distributed randomly at t = 0 with length
	(0) are tracked, and such a simulation is repeated M2 times. Then, the statistical
homogeneity, isotropy and stationarity may permit us to calculate two averages 〈γ 〉
and 〈〈γ 〉〉 over all the M = M1M2 tracked lines, and to estimate the stretching rate
Γ∞(t) of sufficiently extended lines by

Γ∞ = lim
M→∞

〈γ 	〉
〈	〉 = lim

M→∞
〈〈γ 〉〉. (3.13)

An argument can be made for material surfaces similar to the above for lines.

3.3. Numerical results

First, we confirm that the stretching rate Γ∞(t), being calculated numerically by (3.13),
is well-defined irrespective of the initial length of constitutive lines. We perform DNS
of material lines in two dimensions with three different initial lengths (η, 10η and
100η) for four different Reynolds numbers listed in table 1(b). The initial positions
and orientations of the lines tracked are chosen randomly. By using a sufficiently
large number of lines (1000, 100 and 10 for 	(0) = η, 10η and 100η, respectively) and
realizations (8 (IIA), 8 (IIB), 4 (IIC) and 4 (IID)), we estimate 〈〈γ 〉〉, which is plotted
in figure 8. It is clear that the weighted average 〈〈γ 〉〉 is independent of the initial
length 	(0) of constitutive lines. This result confirms that the stretching rate Γ∞(t) of
sufficiently extended lines is defined well by (3.13).

Next, in figure 9, we compare the weighted average 〈〈γ 〉〉 of the stretching rate,
which is independent of the initial line length 	(0), to the non-weighted average
〈γ 〉 for three different 	(0). It is seen that the non-weighted average 〈γ 〉 approaches
the weighted average 〈〈γ 〉〉 as the initial length 	(0), and therefore the initial extent
δ(0), increases. This is because in such a case where the mean spatial extent 〈δ〉 of
constitutive lines is sufficiently larger than L, the fluctuation of γ is negligible and
the right-hand side of (3.13) is approximated well by 〈γ 〉. Thus,

〈γ 〉 → Γ∞ = 〈〈γ 〉〉 as 〈δ〉 /L → ∞. (3.14)
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Figure 8. Weighted average of line stretching rate for three different initial lengths 	(0):
dashed curves, 	(0) = η; dotted curves, 10η; solid curves, 100η. (a) Run IIA. (b) IIB. (c) IIC.
(d) IID.
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Figure 9. Comparison between the weighted 〈〈γ 〉〉 and non-weighted averages 〈γ 〉 of the
stretching rate of material lines in two dimensions. Solid curve, 〈〈γ 〉〉, which is independent of
the initial length 	(0) as seen in figure 8; thick dotted curve, 〈γ 〉 for 	(0) = 100η; thin dotted
curve, 〈γ 〉 for 	(0) = 10η; dashed curve, 〈γ 〉 for 	(0) = η. Run IIC. Observe that 〈γ 〉 approaches
〈〈γ 〉〉 as 	(0) increases.

It is also observed in figure 9 that the non-weighted average 〈γ 〉 is larger for longer
initial length 	(0) for the duration shown in this figure (t � 40τη). This implies that, at
a given Reynolds number, spatially more extended lines have a larger mean stretching
rate 〈γ 〉 as long as 〈δ〉 < L. Note that mean extent 〈δ〉 grows only algebraically (see
figure 16a below). Incidentally, 〈γ 〉 should tend to a unique value, i.e. Γ∞, irrespective
of the initial condition as t goes to infinity because all the tracked lines eventually
become sufficiently long and extended.
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Figure 10. Average stretching rate Γ∞ of sufficiently extended lines in two dimensions for
four different Reynolds numbers.
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Figure 11. Weighted average of stretching rate (a) of lines and (b) of surfaces in
three-dimensional turbulence for five different Reynolds numbers.

The temporal evolution of Γ∞(t) for different Reynolds numbers in a two-
dimensional DNS is plotted in figure 10. It starts at zero because of the random
orientations of material lines at the initial instant, and increases rapidly within several
τη (during this transient time a bump is observed in the graph, which is explained by
Girimaji & Pope (1990) as an effect of vorticity on the material elements). Then it
increases approximately linearly for the duration of the integral time T (10τη ∼ 25τη),
and probably tends to a value which increases with the Reynolds number. This
Reynolds-number dependence of Γ∞(t)τη may be surprising given the observation that
material line deformation is governed by eddies of the Kolmogorov scale (figure 7),
but it is explained in the next section.

Similar behaviours are observed in the temporal evolutions of Γ∞(t) of material
lines and surfaces in three-dimensional turbulence as shown in figure 11. In the line
simulation, we track an initially straight line with length 2π(≈ 2L), and repeat the
simulation M = 131 (IIIA), 181 (IIIB), 35 (IIIC), 20 (IIID) and 20 (IIIE) times. For
the surface simulation, we track an initially flat square surface with area of (200η)2,
and repeat it M =190 (IIIA), 200 (IIIB), 135 (IIIC), 40 (IIID) and 32 (IIIE) times.
Compared to the two-dimensional DNS (figure 10), the variation is large, probably
because of the smallness of the number of tracked material objects. In particular, the
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Figure 12. Schematic of folding by coherent eddies at a given Reynolds number for two
different spatial extents δ of a material line. (a) For δ of O(η), only Kolmogorov-scale eddies
contribute the folding. (b) A more spatially extended line can be folded by many eddies of
different scales between η and δ. The numerical evidence for this picture is given in movie 3
(in the online supplement), where the temporal evolution of a material line in two dimensions
is visualized together with coarse-grained vorticity magnitude.

estimated large value for run IIIE might be accidental (note that M is only O(10)).
Nevertheless, the trend is clear that the normalized stretching rate Γ∞(t)τη increases
with the Reynolds number.

4. Folding effects as an origin of the Reynolds-number dependence
4.1. Qualitative argument

To summarize the numerical results described in the preceding section, the mean
stretching rate 〈γ 〉 of material objects at a given Reynolds number increases with
their spatial extent 〈δ〉 as long as 〈δ〉 < L (figure 9), and the normalized mean
stretching rate Γ∞τη of sufficiently extended objects (i.e. 〈δ〉 � L) takes larger values
for larger Reynolds numbers (figures 10 and 11).

The first key ingredient necessary for understanding the above numerical results is
the fact that the folding is more intensive for material objects of larger extent. As
stated in §2 with reference to figures 4 and 7, the folding is caused by coherent eddies
of counter-rotating pairs of various scales. If the size of material objects is O(η), the
folding is brought about only by swirling motions of the smallest eddies (figure 12a).
If, on the other hand, the material object spreads over many of the smallest eddies
(δ >η), then many pairs of counter-rotating eddies of the smallest size, which are
accompanied by the folded parts of the object, may meet owing to advection by
larger eddies, leading to enhancement of folding (figure 12b). It should be noted here
that this advection effect is brought about by all the eddies smaller than the extent
δ of the material objects but not by those larger than it. Therefore the degree of
folding is characterized by and increases with the ratio δ/η as long as δ is smaller
than the integral scale L, which is the maximal length scale of the constituent eddies
of turbulence. For those material object extended more than L the degree of folding
may be a function of L/η, which increases with the Reynolds number.

Note that mean extent 〈δ〉 increases slowly in time as long as it is larger than
the Kolmogorov length η. More precisely, since the growth of 〈δ〉 is described by
the relative diffusion (Richardson 1926), 〈δ〉 is expected to be proportional to t3/2 for
η  〈δ〉  L, and proportional to t1/2 for 〈δ〉 � L. On the other hand, the line length



74 S. Goto and S. Kida

0 20 40

102

100

104

���

t/τη

Figure 13. Average degree 〈F〉 of folding of a sufficiently extended line (	(0) = 100η) in two
dimensions for four different Reynolds numbers. Thin curve, run IIA; dashed curve, IIB;
dotted curve, IIC; thick curve, IID.

	(t) or the surface area a(t) increases much faster, i.e. exponentially. This is because
the stretching is predominantly caused by the Kolmogorov-scale eddies, whereas the
growth of δ(t) is mainly due to eddies of scale δ(t). These two very different temporal
evolutions of 	(t) (or a(t)) and δ(t) make the folded parts of a line (or a surface)
accumulate in relatively small regions in space. This accumulation is, therefore, quite
intensive and its effect cannot be neglected.

The second key ingredient is the fact that the folded parts of material objects
accumulate non-uniformly in space and this non-uniformity increases the mean
stretching rate because the degree of folding serves as the statistical weight. Because of
the incompressibility of fluid, the accumulation is more intensive where the stretching
is stronger (this may be obvious in the cases of lines in two dimensions and surfaces in
three dimensions, and numerically confirmed in figures 14b and 18a below). Therefore,
more strongly stretching parts can be more prominent in averaging by accumulation
of folded lines or surfaces. This implies that the mean stretching rate of a material
object significantly depends on the degree of folding.

Now we are ready to explain the Reynolds-number dependence of the mean
stretching rate Γ∞ of sufficiently extended material objects observed in figures 10
and 11. When δ > L, eddies of all length scales between η and L contribute to the
folding of the material objects. Hence, at higher Reynolds numbers, eddies in a wider
range of length scales contribute to folding, and therefore the degree of folding is
larger. Consequently, the mean stretching rate, normalized by τη

−1, may be larger for
higher Reynolds number because strongly stretched parts are more emphasized by
the intensive accumulation of folded objects.

This explanation is also consistent with the observation in figure 9 that initially
longer lines have a larger stretching rate at a given Reynolds number. Since the lines
considered in figure 9 are initially straight, longer lines have a larger extent. As lines
with a larger extent are folded by a wider scale range of eddies (see figure 12), the
folding is more intensive and the mean stretching rate becomes larger.

4.2. Numerical verification 1: sufficiently extended lines

A direct verification of the above physical explanation, in which the degree of folding
is the key quantity, is given in figure 13, where we plot the mean multiplicity 〈F〉 of
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Figure 14. (a) PDF of F. (b) Mean local stretching rate G conditioned by local degree F of
folding. The inset in (a) shows the weighted PDF by F. Thin curve, run IIA; dashed curve,
IIB; dotted curve, IIC; thick curve, IID. t = 40τη . 	(0) = 100η.

folding of sufficiently extended lines (	(0) = 100η) in two dimensions for four different
Reynolds numbers. Here, F is estimated by the number of overlapping material
lines found in a small square with side length η/20, which is smaller than both
the Kolmogorov length η and the numerical grid width. It is seen that 〈F〉 increases
exponentially with time and that the growth rate is larger for larger Reynolds numbers.
This result is consistent with the qualitative observation in figure 7, and supports the
argument in the preceding subsection that at a higher Reynolds number, the degree
of folding is more intensive, and therefore the mean stretching rate is larger.

The above argument is strengthened by investigating the behaviour of the probabi-
lity density function (PDF) P (F) of the local degree F of folding and the conditional
average 〈G|F〉 of local stretching rate G for a given F. We plot, in figure 14, the PDF
and the conditional average for material lines with initial length much longer than
η (say, 	(0) = 100η) at four different Reynolds numbers. The abscissa is the degree
of folding normalized by its mean value. The PDF has a sharp peak at the origin
and a long tail. Observe that the PDF tail is more extended for larger Reynolds
numbers. This long tail may be due to the action of larger eddies (i.e. the long-time
correlation of folding, see § 4.4). On the other hand, the conditional average is less
dependent on the Reynolds number; the fluctuation in figure 14(b) is not small, but
no monotonic dependence on the Reynolds number is observed for larger values of
F. It is also important that 〈G|F〉 is an increasing function of F, as expected from
the incompressibility of fluid, that is, the local stretching rate G and the folding F
are positively correlated. The mean stretching rate is then calculated by

Γ∞ =
1

〈F〉

∫ ∞

0

F 〈G|F〉 P (F) dF (4.1)

with 〈F〉 =
∫ ∞

0
FP (F) dF. Note that Γ∞ is expressed as a weighted average of

〈G|F〉 by F. The fact that Γ∞ depends on the Reynolds number (figure 10) implies
that the tail of P (F) contributes significantly to the integral in (4.1). More precisely,
the inset in figure 14(a) shows that the contribution from the tail (say, F/ 〈F〉 � 20) of
FP (F/ 〈F〉) to this integral cannot be neglected; note that in the range F/ 〈F〉 � 20
this function takes larger values for smaller Reynolds numbers, but the resultant
integral is larger for larger Reynolds numbers.
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Figure 15. Stretching rate of material lines in two dimensions. Folded parts are artificially
removed. Thin curve, run IIA; dashed curve, IIB; dotted curve, IIC; thick curve, IID. The
horizontal straight line indicates 0.345, which corresponds to parameter g1 in (4.5).

On the other hand, it is shown in figure 15 that the mean stretching rate

〈G〉 =

∫ ∞

0

〈G|F〉 P (F) dF (4.2)

without the weighting by F does not depend on the Reynolds number. This artificial
mean stretching rate 〈G〉 corresponds to that where the multiplicity due to the folding
of material lines is ignored and lines are treated as single ones. Comparing this
figure with figure 10, it is clear that the folded parts contribute to the Reynolds-
number dependence of Γ∞. Incidentally, the saturated value of 〈G〉 for a later stage
of temporal evolution is about 0.345τη

−1, which turns out to agree with a model
parameter developed in § 4.4.

4.3. Numerical verification 2: lines with a given initial length in η units

As explained in the preceding subsection, if the extent is different, then the degree
of folding differs, and therefore the mean stretching rate is also different. Conversely,
if both the extent 〈δ(0)〉, in units of η, and the degree of folding 〈F(0)〉 are the
same at a given time t = 0, then 〈F(t)〉 is the same at any time t (>0) when 〈δ(t)〉
is smaller than L, even if the Reynolds number is different. In such a case the
stretching rate must be the same in Kolmogorov time units. This is demonstrated
in figure 16 for the stretching rate of lines in two dimensions with the initial length
	(0) = η. Here, we plot the temporal evolution of (a) mean line extent 〈δ〉 and (b)
the arithmetically averaged stretching rate 〈γ 〉 for four different Reynolds numbers.
The temporal evolution of 〈δ〉 /η is independent of the Reynolds number, as expected
from the viewpoint of relative diffusion in the inertial range of statistically self-similar
turbulence (Richardson 1926). Recall that the initial length 	(0), and therefore the
initial spatial extent δ(0), of the tracked lines are the same in units of Kolmogorov
length η. Consequently, the temporal evolution of the non-weighted average 〈γ 〉 of
the stretching rate is also independent of the Reynolds number when 〈δ〉 is within
the inertial range.

Similar verification is performed for the case of lines in three dimensions, and is
shown in figure 17. In these DNS, we track lines starting with a same initial length in
Kolmogorov units, say 	(0) = 5η, for five different Reynolds numbers. Similarly to the
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Figure 16. (a) Temporal evolution of the extent of material lines (	(0) = η) in two dimensions.
Straight dotted line indicates t3/2 corresponding to the Richardson diffusion. Thin curve,
run IIA; dashed curve, IIB; dotted curve, IIC; thick curve, IID. (b) Arithmetically averaged
stretching rate.
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Figure 17. As figure 16 but for lines in three dimensions (	(0) = 5η). (a) Average extent and
(b) non-weighted average stretching rate. Straight line in (a) indicates the t3/2 law. Thick curve,
run IIIA; thick dashed curve, IIIB; dotted curve, IIIC; thin curve, IIID. thin dashed curve,
IIIE.

above two-dimensional simulation, the temporal evolution of both of the mean extent
〈δ〉 and non-weighted mean stretching rate is independent of the Reynolds number.

Although the above result that 〈γ 〉 (see figures 16b and 17b) does not depend on the
Reynolds number but 〈〈γ 〉〉 (see figures 10 and 11) does for lines starting with the same
length in units of η may be perplexing, it can be explained as follows. Even if the tem-
poral evolution of the mean extent 〈δ〉 normalized by η does not depend on the
Reynolds number (figures 16a and 17a), the tail of the PDF of δ expands more for
larger Reynolds number cases (see figure 14 of Goto & Vassilicos 2004). Physically,
the tail of the PDF of δ is explained as the effects of the action of larger eddies. Since,
as seen in figure 9, the stretching rate is larger for more extended lines, well-extended
lines contribute to the tail of the PDF of γ as well. Because of the existence of larger
eddies in higher-Reynolds-number flow, some lines are extended very rapidly, folded
intensively, and therefore have larger values of γ . Direct evidence for this statement
is given in figure 18, where we plot (a) the average of γ conditioned by the degree F
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Figure 18. (a) Average of the stretching rate γ of material lines in two dimensions conditioned
by the degree F of folding. 	(0) = η, t = 25τη . Run IIC. (b) Conditional averages of γ (solid
curve) and F on the extent �.

of folding, and (b) averages of γ and F conditioned by extent δ. These conditional
averages are estimated over a large number of lines in a snapshot at a given time
t = 25τη with initial line length 	(0) = η. We can see a very clear positive correlation
between these three quantities in the region of δ/η smaller than 6, i.e. within the
inertial range. Thus, even though there is no Reynolds-number dependence in 〈δ〉 or
〈γ 〉, the tails of their PDFs depend strongly on the Reynolds number. Accordingly,
the average 〈〈γ 〉〉 weighted by 	 depend on the Reynolds number because the weight
	 ≈ eγ t emphasizes the tail of the PDF of γ .

4.4. Quantitative argument

Here, we develop a quantitative argument. As seen in figure 10, the stretching rate
of sufficiently extended lines seems to saturate after a transient time of O(T). These
saturated values may be roughly estimated as follows. First, we assume, based on
DNS observations, that coherent eddies of the Kolmogorov length survive for a
sufficiently longer time than their turnover time (τη) and that their lifetime is of
order of the integral time T. Then, each eddy in a sufficiently extended material line
can continue stretching it as long as the eddy survives. During the lifetime of an
eddy, the total length of the stretched and accumulated material line around the eddy
may be lengthened approximately by exp[γηT] times. Here, γη is the stretching rate
corresponding to the Kolmogorov-scale eddy. Therefore, the stretching rate Γ∞ of a
sufficiently extended material line may be roughly estimated as

Γ∞ ≈ γη exp[γηT]

exp[γηT]
. (4.3)

The overbar denotes the average over Kolmogorov eddies in the line tangle. If the
distribution of stretching rate γη corresponding to Kolmogorov-scale eddies is assumed
to be Gaussian, (4.3) reduces to

Γ∞ ≈ γη + (γη − γη)2T. (4.4)

It might reasonably be assumed that both the average γη and variance (γη − γη)2 scale
with τη

−1 and τη
−2 respectively because these are determined only by the statistical
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Figure 19. Saturated values of the stretching rate Γ∞ of sufficiently extended lines in two
dimensions. �, DNS data estimated from the stationary period of figure 10; straight line,
prediction (4.5) with g1 = 0.345 and g2 = 0.00525.

features of Kolmogorov-scale eddies. Thus, (4.4) leads to

Γ∞τη ≈ g1 + g2

T
τη

. (4.5)

Here, g1 and g2 are non-dimensional constants independent of the Reynolds number.
We compare, in figure 19, prediction (4.5) with the numerical result. By choosing
the constants as g1 = 0.345 and g2 = 0.00525, (4.5) can describe reasonably well the
Reynolds-number dependence of Γ∞ for lines in two dimensions. Notice that this
value of g1 = 0.345 approximately coincides with the saturated value of the mean
stretching rate of the artificial simulation ignoring the multiplicity of folded parts
shown in figure 15. This is expected from the construction of the above model because
g1 corresponds to the normalized stretching rate without folding.

For the three-dimensional cases, it is difficult to estimate accurately the saturated
values of Γ∞(t) for t � T from the DNS shown in figure 11 owing to large fluctuations
and short integration times. However, noting the scaling T/τη ∼ Rλ in the three-
dimensional isotropic turbulence, we may see that the Reynolds-number dependence
observed in figure 11 seems much stronger than that expressed by (4.5). This may be
due to the breakdown of the assumption of Gaussianity of the distribution of γη in
three-dimensional isotropic turbulence. We have shown in Goto & Kida (2003) that
the PDF of the infinitesimal-line-element stretching rate is not Gaussian and its tail
gets longer as the Reynolds number increases.

5. Concluding remarks
We have shown in both two-dimensional and three-dimensional turbulence that

the stretching rate Γ∞, normalized by τη
−1, of sufficiently extended lines or surfaces

increases with the Reynolds number. The main cause of this Reynolds-number
dependence is not linked to the development of the small-scale singularity in high-
Reynolds-number turbulence. This is confirmed by the fact that the non-weighted
arithmetic mean stretching rate of material line elements is independent of the
Reynolds number† (see figure 20 for line elements in two dimensions, and Girimaji

† It is not known under which conditions the weighted mean stretching rate 〈〈γ 〉〉 of infinitesimal
line or surface elements coincides with Γ∞, although 〈〈γ 〉〉 equals Γ∞ if the spatial distribution of
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Figure 20. Non-weighted mean stretching rate 〈γ 〉 of infinitesimal line elements in two
dimensions. Thin curve, run IIA; dashed curve, IIB; dotted curve, IIC; thick curve, IID.

& Pope (1990) for line and surface elements in three dimensions). Note that if the
reported Reynolds-number dependence were concerned with the development of the
small-scale singularity, the statistics of infinitesimal elements would also depend on
the Reynolds number.

The main cause of the Reynolds-number dependence stems from the accumulation
and pile-up, around Kolmogorov-scale eddies, of material objects folded by eddies of
various length scales. This accumulation of folded objects is spatially non-uniform
and it is more intensive in stronger stretching regions. Therefore, it affects the mean
stretching rate as the statistical weight. Since the folding of material objects can be
described as a multiplicative process, this positive correlation between folding degree
and stretching rate does not decay in time, and therefore the Reynolds-number
dependence survives even after a sufficiently long time. Recall that this non-decaying
correlation is an important contra-intuitive feature of multiplicative processes in
contrast to additive ones (Goto & Kida 2002).

As mentioned at the beginning of the introduction, the study of material object
deformation in turbulence is motivated by the desire to understand and control
turbulent mixing. In this article, we have shed light on the folding of material objects
for the first time, and have drawn the conclusion that the mean stretching rate of
material objects is affected significantly by their folding property. Specifically, Γ∞τη

is larger in larger-Reynolds-number flows as the folding is more intensive. This
conclusion implies stronger mixing at larger Reynolds numbers because the strong
stretching means an effective expansion of the boundary between subregions of fluid.
It is also consistent with the intuitive picture that at larger Reynolds numbers,
eddies in the wider range of length scales simultaneously fold the boundary between
subregions to produce strong mixing of them. This article emphasizes that not only
stretching but also folding of material objects must be considered to understand and
control turbulent mixing.

This research is supported by Grant-in-Aid for Young Scientists from the Ministry
of Education, Culture, Sports, Science and Technology.

material elements is infinitely dense. The argument in Sec.IIIF of Kida & Goto (2002) could be
premature.



Reynolds-number dependence of line and surface stretching 81

REFERENCES

Batchelor, G. K. 1952 The effect of homogeneous turbulence on material lines and surfaces. Proc.
Roy. Soc. London A 213, 349–366.

Batchelor, G. K. 1969 Computation of the energy spectrum in two-dimensional turbulence. Phys.
Fluids Suppl. II 12, 233–239.

Childress, S. & Gilbert, A. D. 1995 Stretch, Twist, Fold: The Fast Dynamo. Springer.

Cocke, W. J. 1969 Turbulent hydrodynamic line stretching: Consequences of isotropy. Phys. Fluids
12, 2488–2492.

Frisch, U. & Vergassola, M. 1991 A prediction of the multifractal model—the intermediate
dissipation range. Europhys. Lett. 14 439–444.

Girimaji, S. S. & Pope, S. B. 1990 Material-element deformation in isotropic turbulence. J. Fluid
Mech. 220, 427–458.

Goto, S. & Kida, S. 2002 Multiplicative process of material line stretching by turbulence.
J. Turbulence 3, 017.

Goto, S. & Kida, S. 2003 Enhanced stretching of material lines by antiparallel vortex pairs in
turbulence. Fluid Dyn. Res. 33, 403–431.

Goto, S. & Vassilicos, J. C. 2004 Particle pair diffusion and persistent streamline topology in
two-dimensional turbulence. New J. Phys. 6, 65.
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